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disability; hearing loss; and hypotonia. To date, 28 pa-
tients with MCTT syndrome have been reported in the 
literature.1,3-6 Its clinical phenotype has been estab-
lished, with some clinical and research studies having 
been conducted on its aetiology and pathogenesis.3,4 
The present authors reviewed the clinical symptoms, 
pathogenic gene, pathogenic mechanisms and treat-
ment of patients with MCTT syndrome reported in the 
literature. The study was approved by the ethics com-
mittee of China Medical University, Hospital of Stoma-
tology (approval no. 2021-20).

Relationship between clinical symptoms and 
gene variants

Based on the common symptoms of MCTT syndrome 
(Table 1), all patients exhibited developmental delay, 
characteristic facial defects and ear anomalies.1,3-6 
Symptoms with an incidence of more than 90% included 
speech delay, motor delay, intellectual disability, midfa-
cial hyperplasia, short and upturned nose, and hyper-
telorism. Other symptoms included oculomotor defects 
(such as Duane anomaly, nystagmus and strabismus), 
spinal anomalies (clinical or radiographic abnormali-
ties such as lordosis, scoliosis or kyphosis), atrial or 
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MN1 C-terminal truncation (MCTT) syndrome, also 
known as craniofacial defects, dysmorphic ears, struc-
tural brain abnormalities, expressive language delay 
and impaired intellectual development (CEBALID) syn-
drome, was first reported by Mak et al1 and is caused 
by Meningioma-1 (MN1) gene variants.1,2 The most 
common features of MCTT syndrome include char-
acteristic facial defects; cranial and brain anomalies; 
developmental, speech and motor delays; intellectual 
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ventricular septal defects, seizures, hyperphagia, cleft 
palate and congenital diaphragmatic hernia.1,3

MN1 gene variants lead to MCTT syndrome. MN1, 
located at chromosome 22q12.1, is a transcriptional 
coregulator composed of two exons and that encodes 
1,320 amino acid residues. The t (4;22) MN1 gene vari-
ant was first reported in meningioma and t (12;22) in 
myeloproliferative diseases.7,8 MN1 is closely related 
to haematological malignant tumours, especially acute 
myeloid leukaemia, and high expression of MN1 is 
related to poor prognosis.9-11 

Variants in MN1 at different sites lead to different 
clinical symptoms. MCTT syndrome is a variant in 
MN1 located at the terminal exon or extreme 3’ region 
of exon 1. To date, 16 different variant sites have been 
identified in MCTT syndrome (Fig 1 and Table 1), result-
ing in different clinical symptoms (Table 1).1,3-6 Among 
the 16 variant sites, six variant sites of six patients were 
located in the extreme 3’ region of exon 1, including 
all three reported Chinese patients.4-6 Ten variant sites 
of 22 patients were located at exon 2. For patients with 
variants in exon 1, symptoms with an incidence of 
more than 90% included developmental delay, speech 
delay, motor delay, intellectual disability, characteristic 
facial defects, ear anomalies and hypertelorism, which 
were consistent with those of patients with variants in 
exon 2 (Table 1). The phenotypes of variants in the two 
exons differed from each other mainly in the cranio-
maxillofacial region. The incidences of brain magnetic 
resonance imaging (MRI) abnormalities and palatal 
morphology differed between the two groups. 

The incidence of brain MRI abnormalities in exon 
2 was 82%, which was 32% higher than that in exon 1. 
Notably, none of the three Chinese patients had symp-
toms of brain MRI abnormalities.

All patients with MCTT syndrome showed character-
istic facial features, and 93% of patients had maxillary 
hypoplasia. Consequently, a high-arched palate was 
commonly observed (Table 1).1,3-5 In terms of palatal 
morphology, the incidence of a high-arched/narrow 
palate in exon 2 was 76% and 50% in exon 1. Among all 
the reported patients with MCTT syndrome, only three 
were diagnosed with cleft palate. Two of these were 
Chinese, and all three variant sites were located in the 
extreme 3’ region of exon 1 and the incidence was 50%. 
One patient was diagnosed with a submucosal cleft 
palate with bifid uvula.1 One Chinese patient was diag-
nosed with cleft palate.4 The initial diagnosis of another 
Chinese patient was submucosal cleft palate5, consist-
ent with the previous case reported1; however maxillary 
expansion was performed over 2 years and widened the 
maxilla, and the cleft secondary palate became visible, 

possibly because the maxillary hypoplasia and narrow 
maxilla resulted in the maxilla and palate adhering to 
each other.5 The incidence of cleft palate associated 
with MCTT syndrome may be related to race or variant 
location. Although these are uncertain at present due to 
the small number of reported cases, whether cleft pal-
ate should be included as a common symptom of MCTT 
syndrome merits further research.

Narrowing of the maxilla could influence man-
dibular development, resulting in reactive mandibular 
protrusion or retrusion. The clinical symptoms of man-
dible positions varied in the reported cases, including 
eight cases of normal mandibular development, six of 
mandibular protrusion and five of mandibular hypo-
plasia. These indicated that the development of the 
maxilla was affected, whereas that of the mandible was 
normal in MCTT syndrome.1

In addition, one patient had obstructive sleep apnoea 
(OSA) syndrome. Maxillary hypoplasia and mandibu-
lar retrusion are significant causes of a narrow upper 
airway in patients with OSA.5,12 Hypoxemia and hyper-
capnia are caused by frequent apnoea and hypopnea in 
children with OSA. OSA causes damage to various sys-
tems, resulting in several complications such as poor 
memory, impaired growth, learning and behavioural 
problems, and other cognitive impairments. Children 
with severe or untreated OSA also suffer from serious 
cardiovascular complications.13,14 It aggravates other 
symptoms such as muscle weakness and developmental 
delay in patients with MCTT syndrome, which requires 
immediate attention.

Possible pathogenic mechanisms

In MCTT syndrome, gene variants lead to C-terminally 
truncated protein expression. Our unpublished results 
showed that the mutant MN1 protein (c. 3760C > T, p. 
Q1254 *.) leads to the deletion of a terminal helix struc-
ture due to the premature stop codon (Fig 2). 

Both wild-type and mutant-type MN1 proteins were 
localised in the nucleus.3,4 Mutant MN1 proteins tended 
to aggregate more than wild-type MN1 proteins, pos-
sibly due to the increased number of intrinsically 
disordered regions in MN1 proteins that cause phase 
separation; however, the specific pathogenic mechan-
isms underlying MCTT syndrome remain unclear.

Miyake et al3 confirmed that the MN1 variant led to 
escape nonsense-mediated mRNA decay and the MN1 
protein was degraded by the ubiquitin-proteasome 
pathway. Mutant MN1 proteins showed higher stability 
than the wild-type. The C-terminal region of MN1 is 
degraded by the ubiquitin-proteasome pathway. MN1 
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participates in the transcriptional regulation of target 
genes by interacting with transcription factors Pre-
B-Cell Leukaemia Homeobox 1 (PBX1), PBX/Knotted 
Homeobox 1 (PKNOX1) and Zinc Finger Protein 450 
(ZBTB24). The binding of mutant MN1 to E3 ubiqui-
tin ligase ZBTB24 and Really Interesting New Gene 1 
(RING1) protein is impaired, which interferes with the 
degradation of MN1 protein resulting in mutant MN1 

protein aggregation and imbalanced MN1-related tran-
scription.3

All patients with MCTT syndrome exhibited mid-
facial hypoplasia, but the underlying mechanism by 
which MN1 affects midfacial development remains 
unclear. MN1 plays an important role in maintain-
ing the proliferation, differentiation and function of 
osteoblasts, and is related to craniofacial development 

Fig 1  Variant sites of 
mutant-type MN1. Blue, 
other countries’ patients; 
green, Chinese patients. 
*Non-sense mutation.

Table 1  The incidence of different clinical symptoms in the reported MCTT syndrome patients.

Clinical symptoms* All patients (positive/
total) and positive/total %

Patients with different variant sites of mutant-MN1
Exon 1 (positive/total) and 
positive/total %

Exon 2 (positive/total) and 
positive/total %

Developmental delay (27/27) 100% (5/5) 100% (22/22) 100%
Speech delay (24/26) 92% (5/5) 100% (19/21) 90%
Motor delay (24/25) 96% (4/4) 100% (20/21) 95%
Intellectual disability (17/18) 94% (3/3) 100% (14/15) 93%
Hearing loss (18/26) 69% (4/6) 67% (14/20) 70%
OSA (1/1) 100% (1/1) 100% NR
Brain MRI abnormalities (17/23) 74% (3/6) 50% (14/17) 82%
High-arched/narrow palate (19/27) 70% (3/6) 50% (16/21) 76%
Cleft palate (3/27) 11% (3/6) 50% (0/21) 0%
Hypotonia (20/23) 87% (4/5) 80% (16/18) 89%
Feeding difficulty (15/24) 63% (3/5) 60% (12/19) 63%
Cranial anomaly (21/27) 78% (5/6) 83% (16/21) 76%
Characteristic facial defects (28/28) 100% (6/6) 100% (22/22) 100%
Midface hypoplasia (25/27) 93% (4/5) 80% (21/22) 95%
Mandibular skeletal retrusion (6/22) 27% (1/4) 25% (5/18) 28%
Down slanting palpebral fissures (16/22) 73% (3/4) 75% (13/18) 72%
Ear anomalies (28/28) 100% (6/6) 100% (22/22) 100%
Short and upturned nose (26/28) 93% (5/6) 83% (21/22) 95%
Hypertelorism (24/26) 92% (5/5) 100% (19/22) 90%

NR, not reported. 
*Not all case reports mention all the clinical symptoms, so the “total” number may not be 28.
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in mice and humans.15-17 In vitro experiments showed 
that MN1 plays a key role in regulating osteoblast 
proliferation.16 Moreover, MN1 is important for intra-
membranous bone formation. Evolutionary analysis 
has shown that MN1 appears at the base of bony verte-
brates, where the ossified head emerges.15 Thus, MN1 
is a key gene involved in skull formation and variations 
in skull shapes within a population.15 MN1 plays an im-
portant role in maintaining the normal maturation and 
function of skull osteoblasts, and is related to brain and 
craniofacial development in mice and humans.17 

Half of the patients with variants in exon 1 were 
reported to have cleft palate but the underlying mech-
anism was unclear. The deletion of MN1 affects the 
development of membranous bone in mice, with some 
symptoms resembling the human phenotype, such as 
craniofacial abnormalities (mandibular retrusion is 
common), cleft palate, speech delay, feeding problems, 
vestibular schwannomas and corpus callosum agene-
sis.18-22 MN1 is involved in the development of cleft pal-
ate in mice.23,24 Meester-Smoor et al24 constructed an 
MN1 knockout transgenic mouse model and found that 
MN1 homozygous knockout mice usually died at birth 
due to secondary cleft palate, whereas 15% of MN1 het-
erozygous knockout mice had mild palate defects and 
formed a narrow cleft palate. It has been suggested that 
MN1 should be considered a candidate gene for cleft 
palate, prompting us to further investigate the effect of 
MN1 gene variants on craniofacial development, espe-

cially on cleft palate.
One case of MCTT syndrome was complicated by 

OSA.5 Among the reported cases, patients with MCTT 
syndrome had developmental delays and hypotonia. 
Miyake et al3 found that MN1 is highly expressed 
in foetal and adult skeletal muscle. Some patients 
with MN1 deletions have Pierre-Robin syndrome.21,22 
Homozygous MN1 knockout mice died of dyspnoea 
after birth, with no pulmonary function or devel-
opmental abnormalities.24 In the case of MN1 over-
expression, hypoxia-related genes were significantly 
upregulated in mice carrying Additional Sex Combs-
Like Transcriptional Regulator 1 (ASXL1) variants com-
pared with those in wild-type mice.25 OSA causes 
hypoxia, which usually inhibits osteoblast activation 
and proliferation.26 Utting et al27 noted that exposure 
to hypoxia delays osteoblast growth and differentiation, 
and decreases bone formation. In addition to decreased 
osteoblast production, osteoblast matrix mineralisa-
tion is inhibited during hypoxia due to the decreased 
expression and activity of alkaline phosphatase.26,28 
Hypoxia stimulates an increase in the number and 
activity of osteoclasts29; however, persistent hypoxia 
can inhibit osteoclast formation and activity due to 
extensive cell death.30 Thus, the relationship between 
OSA and MN1 variants and the underlying mechanisms 
warrant further investigation.

Treatment

Currently, there are no reports on treatment results and 
the efficacy of treatment in patients with MCTT syn-
drome. It is advisable to treat the patient’s clinical symp-
toms with rehabilitation, speech training and cardio-
vascular therapy.2 Multidisciplinary experts can address 

Fig 2  MN1 protein structure prediction (c.3760C > T, 
p.Q1254*). Blue, wild-type MN1; yellow, mutant-type MN1; red, 
the deletion part of wild-type MN1.

Fig 3  Image of a typical patient (from Yu et al5): maxilla before 
treatment (a); maxilla after treatment (b); frontal face (c).
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problems such as developmental delays, intellectual dis-
abilities, feeding problems, epilepsy, hearing loss and 
speech delay, and refer patients to stomatologists for 
treatment only if there is a malocclusion. Only one study 
reported the effect of treatment in the orthodontic and 
respiratory department settings (Fig 3).5 Using a reverse 
sector fan-shaped expander, the patient’s maxilla was 
widened to provide space for the development of the 
mandible, and continuous positive airway pressure was 
used during this period to improve the patient’s respira-
tory condition.5 After 2 years of treatment, the OSA and 
the patient’s condition improved, and systemic prob-
lems such as developmental delays and muscle weak-
ness were also improved significantly, suggesting that 
despite the abnormal maxillary development in this 
patient, the mandibular development conformed to the 
natural course of growth and development.5 Therefore, 
the author recommended oral and pulmonary evalu-
ations for multidisciplinary treatment of MCTT syn-
drome.5 For patients with narrow maxillae, the author 
recommended expanding the arches to enlarge the oral 
volume in those with the potential for growth and devel-
opment5; however, once the narrowing of the upper air-
way and hypoxia are observed, it is necessary to conduct 
appropriate examination and treatment in the respira-
tory department. At present, there is only one report 
on therapeutic effect.5 Thus, it is necessary to conduct 
further investigation and verification.

Summary

The different sites of gene variants may influence the 
clinical symptoms of MCTT syndrome and there may 
be racial differences. Characteristic features such as 
dysplasia of the palate and developmental delay suggest 
the possibility of MCTT syndrome, which can be diag-
nosed by whole genome sequencing. The craniofacial 
anomalies and developmental delays attributed to this 
syndrome would benefit from optimising care with a 
particular focus on the teeth, palate, maxilla and upper 
airway. We also recommend oral and pulmonary evalu-
ations for multidisciplinary treatment of MCTT syn-
drome. Further studies on the clinical characteristics 
and pathogenic mechanisms may help develop long-
term treatment strategies and establish a multidiscip-
linary treatment system to improve the quality of life of 
patients with MCTT syndrome.
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