
163Chinese Journal of Dental Research

alignment and interfacial bonding between collagen 
fibrils and mineral phases.3 Biomineralisation is a nat-
ural biosynthetic process whereby organisms fabricate 
hierarchical organic-inorganic composites to maintain 
life, support growth and drive biological evolution.4 
Following the identified mechanisms of biomineralisa-
tion, biomimetic mineralisation materials have shown 
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control over the nucleation and growth of inorganic crystalline phases, resulting in the for-
mation of hierarchically structured biocomposites that exhibit exceptional mechanical and 
functional properties. Since damage to bone and teeth directly affect everyday life, various 
biomimetic mineralised materials have been engineered for use in biomedical applications. 
While bioinspired materials typically demonstrate superior mechanical properties and biologic-
al functions, significant disparities remain between biomimetic constructs and their natural 
counterparts, especially concerning mechanical performance and multiscale structural organi-
sation. This review initially describes the dynamic reciprocity between type I collagen fibrils, 
amorphous calcium phosphate phases and multifunctional non-collagenous protein within 
mineralisation microenvironments. Furthermore, it evaluates recent progress in advanced 
biomaterials based on biomimetic mineralisation strategies and seeks to spark innovative and 
promising solutions for investigators exploring biomineralisation principles in regenerative 
medicine and hard tissue reconstruction. Existing problems and future directions are discussed.
Keywords: biomineralisation, calcium phosphate, calcium, hard tissue regeneration, non-
collagenous proteins
Chin J Dent Res 2025;28(3):163–172; doi: 10.3290/j.cjdr.b6553419

As load-bearing systems in vertebrates, dental and skel-
etal tissues demonstrate evolutionarily optimised struc-
tural integration of organic-inorganic components.1,2 
The exceptional mechanical performance of hard tis-
sue arises from mineralisation-driven architectural fea-
tures, including spatially ordered hydroxyapatite (HA) 
deposition, organic matrix-guided crystallographic 



164 Volume 28, Number 3, 2025

Zhang et al

promising mechanical properties in laboratory set-
tings. Collaborative efforts have been made to engineer 
biomimetic osteoconductive scaffolds, with the goal of 
enhancing bioactive interface compatibility and inte-
grating robust mechanical properties and superior 
biological functionalities and synchronised resorption 
rates with neo-osteogenesis timelines. In repairing 
bone defects, the closer the engineered scaffold mimics 
the natural bone properties, the higher the likelihood 
of its acceptance by the body and its ability to promote 
new tissue growth.5 Subsequently, contemporary bio-
mimetic mineralisation strategies focus accordingly on 
recapitulating the dynamic mineralisation microenvir-
onment of hard tissue through controlled deposition of 
calcium phosphate phases within engineered collagen 
matrices.6

This review describes cutting-edge advancements in 
template-based biomimetic mineralisation strategies 
for hard tissue regeneration (Fig 1), elucidating the cur-
rent research status of biomimetic mineralisation and 
discussing future development trends. 

Synthesis and assembly process of biomineral-
ised tissue (collagen-based) in natural conditions

Biomineralisation is a biological phenomenon charac-

formation, wherein mineral nucleation occurs through 
spatially organised processes that yield defined crystal-
line architectures under biomolecular orchestration.7,8 
It is important to provide a brief introduction to the 
collagen-based biomineralisation of hard tissues-with 
a hierarchical structure containing inorganic carbon-

ated HA nanocrystals embedded within organic type I 
collagen matrices.9,10

Biomineralisation modalities are categorised as 
intrafibrillar and extrafibrillar based on mineral-colla-
gen spatial orchestration. Intrafibrillar mineralisation, 
which exemplifies biological regulation of inorganic 
crystallisation with mineral nanocrystals aligned along 
the long axis of a single fibril, governs the biomech-
anical competence of bone through crystal alignment 
within the supramolecular confinement of collagen, 
simultaneously enabling hierarchical assembly and 
osteogenic functionality.11-17 Extrafibrillar mineralisa-
tion manifests through ectopic deposition of mineral 
phases external to the supramolecular architecture of 
collagen, generating HA-collagen composites with dis-
ordered spatial configurations.18 This process features 
micrometre-scale HA aggregates localised at fibril-
lar interfaces or inter-fibrillar gaps, contrasting with 
intrafibrillar crystallisation patterns.19 

Biomineralisation begins with the conversion of 
calcium and phosphate ions into amorphous calcium 
phosphate (ACP) nano-precursors. Subsequently, min-
eral nucleation is templated at specific sites on the col-
lagen substrate, guiding the formation of the biomin-
eral structure under the mediation of non-collagenous 
proteins (NCPs).

The scaffolds and templates, collagen molecules, are 
secreted by osteoblasts, which assemble into amino 
acid triplets predominantly composed of proline (Pro), 
hydroxyproline (Hyp) and glycyl (Gly).20,21 Their mo-
lecular structures contain carboxyl groups, which can 
form carboxylates under physiological conditions. The 
binding of calcium ions to the negatively charged car-

-
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boxylate groups of collagen is a pivotal factor in initiat-
ing the nucleation of HA crystals.22 The fibrillogenesis 
in osseous tissues is initiated with synthesis of triple 

to establish the characteristic hierarchical architec-
ture.23

During mineralisation, ACP, providing calcium 
recourse, undergoes thermodynamically favoured tran-
sition, ultimately recrystallising into carbonated HA 

which finally transform into HA, thereby imparting 
anisotropic mechanical reinforcement.24-28

Notably, NCPs demonstrate multifaceted functional-
ity in orchestrating mineralisation dynamics through 
initiation of crystal nucleation, stabilisation of amor-
phous precursors, modulation of morphogenesis and 
suppression of uncontrolled calcification.29-31 These 
acidic macromolecules, including mineral-binding pro-
teoglycans bone sialoprotein (BSP), osteonectin, osteo-
pontin (OPN) and osteocalcin (OCN), dentine phospho-
protein (DPP), dentine matrix protein 1 (DMP1), bone 
sialoprotein, osteocalcin and bone morphogenetic 
protein (BMP-2), enriched with aspartic/glutamic acid 
residues bearing ionisable carboxyl moieties, dem-
onstrate high-affinity calcium chelation capacities, a 
critical determinant of their mineralisation regulatory 
functions.32-34

Given the intricate orchestration of biomineralisa-
tion in natural tissues, the development of biomimetic 
mineralisation strategies has emerged as a promising 
avenue to replicate these processes artificially. By har-
nessing the principles of biomineralisation, research-
ers aim to design advanced synthetic materials that 
closely mimic the hierarchical structure and function-
ality of natural bone, thereby enhancing their potential 
for biomedical applications such as bone repair and 
regeneration.

Strategy for development of biomimetic mineral-
ised materials

The mechanical behaviour of the collagen-mineral 
composite in bone is critically dependent on the nano-
mechanical heterogeneity of mineral and collagen 
components, as well as their hierarchically staggered 
nanostructure, which enables the bone to dynamically 
adapt to varying mechanical demands.5,14,35 Thus, the 
goal of biomimetic mineralisation is to recapitulate the 
cross-linking chemistry and molecular packing struc-
ture of collagen, the characteristics of mineral particles 
and their interaction. 

Matrix and templates

The nucleation, growth and morphology of hierarchical 
mineralised structures are influenced significantly by 
the charge distribution, conformational changes, supra-
molecular assembly and post-translational crosslinking 
of biomacromolecules within the templates.36 Artifi-
cial biomaterials have been engineered as scaffolds to 
emulate the structural organisation and composition of 
biominerals, with the goal of replicating their biological 
functionality.

Collagen 

Mineralised collagen is the most basic building block of 
natural bone and dentine.37,38

domains mediate cellular adhesion while orchestrating 
calcium phosphate nucleation through spatial confine-
ment effects, directing nanocrystalline alignment.38,39 
The conventional method of mineralising collagen 
involves simulating the composition of hard tissue, 
which means directly blending minerals and collagen 
solution or immersing preformed collagen scaffolds in 
the solutions of mineral ions.38,40,41 Researchers have 
used a freeze-dried collagen solution to fabricate col-
lagen-based bone regeneration scaffolds and achieved 
bone repair.8,42-44 Merely simulating the composition of 
bone is insufficient, as the intricate structures of bone 
play a crucial role in its overall functionality and mech-
anical properties.

Extrafibrillar mineralisation has been primarily 
reported to develop mineralised collagen to stimulate 
the construction of hard tissue. However, the limita-
tion of extrafibrillarly mineralised collagen (EMC) is its 
inadequate mechanical strength. This deficiency arises 
because the populations of HA aggregates within the 
extrafibrillar spaces inhibit the transport of precursors 
to the inside of the matrix and prevent further min-
eralisation throughout its depth and fail to replicate 
the multi-scale design of hard tissue.45 Then, strategies 
adopted for biomimetic intrafibrillar mineralisation 
have been introduced, which can be roughly catego-
rised into two types. In one, NCP-stabilised amorphous 

-
finement, then transform into the crystalline phase 
to initiate mineralisation.25,46,47 Liu et al48,49 created 
a hierarchical intrafibrillar mineralised collagen scaf-
fold that mimics the periodic nano-architectures of 
native bone, utilising polyacrylic acid as mineralisation 
regulator.

In the other, synchronised apatite crystallisation and 
collagen organisation occur in a cooperative self-assem-
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bly process through liquid crystalline phase transitions, 
which only requires amorphous primary particles and 
organic macromolecules without NCPs or their poly-
meric analogues.22,50-52 The concentration of calcium 
ions could strongly influence the mineral distribution 
in collagen matrices and the size and direct 3D orien-
tation of apatite crystals, in a manner similar to that 
found in fresh untreated bone.50,51,53 The formation 
of a bio-inspired mineralisation of collagen matrix on 
graphene oxide (GO) nanosheet surfaces by changing 
the concentration of collagen has been reported in the 
absence of calcium-binding polymer or NCP.54 Giraud-
Guille et al55 also found that intact, 300-nm-long col-
lagen molecules could form typical liquid crystalline 
domains in viscous collagen solution after sonication. 
Additionally, self-assembly collagen/apatite scaffold can 
also be synthesised by changing the main mechanical 
microenvironment, such as solution pH optimisation 
and the application of a small amount of fluid shear 
stress (FSS) (less than 2 Pa, especially within 1.5 Pa) to 
induce the assembly of collagen molecules.56-58

Non-collagen

Current methodologies rely predominantly on animal-
derived collagen. However, naturally extracted collagen 
is difficult to optimise and modify, and its structural 
domains are often suboptimal in vitro to obtain suffi-
cient mechanical properties for hard tissue engineering. 
Replacing collagen with engineered organic matrices 
allows systematic control over structural and process-
directing parameters, thereby elucidating their individ-
ual contributions to biomineralisation mechanisms.31,59

Notably, Li et al26,60 achieved intrafibrillar mineral-
isation of self-assembled elastin-like recombinamers 
(ELRs) utilising a bioinspired polymer-induced liquid 
precursor (PILP) mineralisation method, by which pol-
yaspartate-stabilised amorphous calcium phosphates 
infiltrated preferentially into the fibrils and then crys-
tallised into HA crystals with their axes aligned paral-
lel to the long axis of the ELR fibril. Similarly, Yu et al 
reported a biomineralisation-inspired technique for 
the synthesis of hybrid materials mimicking the hier-
archical structure of spider silk fibres, composed of 
polyvinyl alcohol (PVA) and sodium alginate (Alg), with 
HA uniformly mineralised along PVA to reinforce PVA 
macrofibres with their excellent mechanical properties 
and exhibit remarkable mechanical properties.61

Cellulose nanocrystals (CNCs) can also be used as 
versatile templates for engineering hierarchical 3D 
architectures owing to their exemplary mechanical 
robustness, biocompatible nature, reduced mass den-

sity and minimal cytotoxic/ecotoxic potential.62 The 
anionic surface characteristics of CNCs facilitate elec-
trostatic stabilisation of inorganic nanoparticles (e.g., 
Ag, Au, Pt, Pd) in aqueous suspensions, enabling bio-
mimetic nucleation of calcium phosphate phases.63-65 
Ribeiro et al63 have developed nanocomposites using 
hierarchical-mineralised CNCs (mCNCs) modified with 
platelet lysate providing cell binding sites to mimic the 
nucleation of calcium phosphates, successfully recon-
structing a nanostructured biomimetic mineralisation 
microenvironment that emulates extracellular matrix.

Chitosan (CS), a partially or fully deacetylated chitin 
derivative, exhibits structural homology and biomi-
metic functionalities analogous to extracellular matrix 
components during biomineralisation.66,67 Guo et al68 
fabricated a hybrid nanostructured HA-CS compos-
ite scaffold by alkaline solution treatment to reca-
pitulate the hierarchical mineralisation dynamics of 
osseous apatite. Carboxymethyl CS (CMCS) is a water-
soluble derivative of CS with the ability to chelate Ca2+ 
and regulate the nucleation and growth of apatite. 
CMCS nanofibres mineralised by HA have shown the 
enhancement of the adhesion, proliferation and dif-
ferentiation behaviours of BMSCs and the promotion 
of new bone formation and maturation.69 Beyond 
conventional CS/calcium phosphate composites, silica-
incorporated hybrid biomimetic mineralised CS scaf-
folds shave also exhibited accelerated calcium phos-
phate deposition with preserved cytocompatibility, 
demonstrating superior in vitro osteogenic bioactivity 
compared to pristine CS architectures.70,71

Synthetic polymers are also widely used as scaffolds 
for bone tissue engineering. Buschmann et al72 devel-
oped a hybrid of poly(lactic-co-glycolic acid) (PLGA) 
and HA, replicating both compositional and ultrastruc-
tural features of collagen-apatite complexes inherent to 
cortical bone extracellular matrices.73

Moreover, there are many ways to enhance biomin-
eralisation, such as strategic integration of magnesium-
based compounds (MgO, MgCO3) into biomaterials 
to promote the proliferation and osteogenic differen-
tiation of BMSCs.74 Controlled release of silicate ions 
could promote massive collagen secretion and acceler-
ate polydopamine surface functionalisation to provide 
nucleation sites for apatite deposition.75-77 Another 
example of successful biomimetic mineralisation of 
analogues of materials is the gelatine methacryloyl 
(GelMA)-polylactide (PLA) composite scaffolds, where 
the hydrophobic PLA component emulates cortical 
bone mechanics while GelMA hydrogels mimic cancel-
lous bone microenvironments, achieving dual-phase 
structural biomimicry.78,79



167Chinese Journal of Dental Research

Zhang et al

Calcium resource provider

ACP constitutes a metastable ionic assembly of calcium 
and phosphate ions, functioning as a transient precur-
sor phase for apatite crystallisation.80-84 Considering the 
ACP fluid precursor is transient and unstable, ACP nano-
particles (NACP) and casein phosphopeptide-ACP (CPP-
ACP) paste were promoted, which could enhance mech-
anical integrity and dentine remineralisation through 
increased surface area and efficient ion release.85,86 
Clinically, however, the most commonly used calcium-
containing mineralising medium is calcium phosphate 
mineralising solution, including simulated body fluid 
(SBF) and calcium/phosphate-enriched artificial saliva 
(AS) to replicate physiological conditions for HA depos-
ition.3-17,26,27,87-90 

In addition, calcium phosphate oligomers (CPOs), 
engineered nanoscale clusters of calcium phosphate 
ions, bioactive glass and calcium chloride solution, could 
also be employed as calcium resource provider.91-94

Crystal precursor stabiliser

Since the thermodynamic instability of ACP often leads 
to its transformation into more stable HAP crystals, 
which cannot infiltrate collagen fibrils, much attention 
has been drawn to NCPs.29,80 NCPs with a high degree of 
anionic character due to the presence of a considerable 
number of carboxylate groups along their backbone 
could inhibit bulk crystallisation and instruct ions to 
be sequestered to form stabilised ACP precursor, there-
by achieving intrafibrillar mineralisation. instructing 
ions to be sequestered and form stabilised ACP precur-
sor.47,95-99 Due to their limited availability, high cost and 
difficulty to extract and purify natural NCPs, however, 
numerous researchers have dedicated their efforts to 
identifying and engineering synthetic analogues cap-
able of replicating the functional roles of NCPs within 
biomineralisation.90  

Many researchers are committed to identifying and 
developing analogues that can effectively replicate 
the role of NCPs in the biomineralisation process. 
Polyanionic synthetic polymers including polyaspar-
tic acid (p-Asp), polyacrylic acid (PAA) and polyvinyl 
phosphonic acid (PVPA) mimic charge distribution. 
Polyaspartic acid (p-Asp) has the capacity to stabilise 
ACP clusters by capillary action. Deshpande et al100 
employed poly-l-aspartic acid as a non-collagenous 
analogue, resulting in the deposition of ribbon-shaped 
apatite crystals within fibrils with aligned c-axes, rep-
licating native bone/dentine organisation. Poly (acrylic 
acid) (PAA) may mimic the calcium phosphate-binding 

sites of DMP1, while poly(vinylphosphonic acid) (PVPA) 
simulates the collagen-binding function of DMP1, guid-
ing the recruitment of nano-precursors to the collagen 
matrix.81,101-107 Hu et al107 leveraged the ionotropic 
properties of PAA to align HA nanocrystals along col-

mineralisation pattern.
Further studies revealed that polyallylamine hydro-

chloride (PAH), a polycationic compound, could also 
induce intrafibrillar mineralisation.108,109 The positive 
charge of PAH-ACP drives cations out of the collagen 
fibres, causing water to exit and create negative pres-
sure, which is then alleviated as PAH-ACP electro-
statically interacts with collagen to allow fluid ACP to 
enter the fibres.110

Moreover, CMC, a zwitterionic polymer with abun-
dant carboxyl groups, could bind strongly with Ca2+ and 
acts as a water-soluble chelator to synthesise ACP precur-
sors, forming nanocomplexes that penetrate collagen 
fibrils and facilitate intrafibrillar mineralisation.111,112 

Beyond polyelectrolytes, casein phosphopeptides 
(CPPs) containing phosphoryl residues can bind with cal-
cium and phosphate ions, preventing the aggregation or 
precipitation of ACP nano-precursors. This interaction 
subsequently promotes crystal nucleation and growth 
along the phosphorylated dentine collagen fibres.86 

Branched polymers such as PAMAM dendrimers 
have been reported to exhibit sequestration and tem-
plating functions similar to those of NCPs.84 In solution, 
PAMAM dendrimers, including diverse terminal groups 
such as carboxyl-terminated (PAMAM-COOH), hydroxy-
terminated (PAMAM-OH), amine-terminated (PAMAM-
NH2) and phosphate-terminated (PAMA-PO3H2) can 
inhibit mineralisation and stabilise ACP nanoprecur-
sors, thereby preventing phase transformation.13,113-116

Except polymers, amino acids, such as glutamic acid 
(Glu) at appropriate concentrations, can also induce the 
aggregation of HA with spherical morphology in a hier-
archical structure.117 Periodic FSS alone can complete 
intrafibrillar mineralisation and promote the transfor-
mation of ACP into apatite crystals, accelerating the for-
mation of highly orientated hierarchical intrafibrillar 
mineralised collagen.57,118 

In addition, some small molecules, such as citrate and 
fluoride, have been found to affect intrafibrillar miner-
alization. Citrate molecules could reduce the interfacial 
energy between the collagen matrix and ACP precursors 
significantly, thus regulating the heterogeneous miner-
alisation behaviour.119 Saxena et al120 also found that the 
fluoride concentration could influence the morphology 
of the crystals and the mineralisation site and increase 
the amount of inter-/extrafibrillar mineral.
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Furthermore, biomimetic mineralisation can occur 
independently of NCPs or their counterparts.121 Wang 
et al50 successfully demonstrated spontaneous collagen 
self-assembly alongside the initiation and alignment 
of carbonate apatite mineral growth, all without the 
requirement of any additional vertebrate extracellular 
matrix molecules typically involved in calcifying tis-
sues. 

Clinical application

Biomimetic mineralisation materials offer significant 
advantages in clinical applications, particularly hard tis-
sue regeneration, due to their optimal mechanical prop-
erties, biodegradability and architecture for cell coloni-
sation and organisation.122 Their mechanical properties 
can be tailored to match those of natural bone, mak-
ing them suitable for load-bearing applications.50,53,96 
Biomimetically engineered materials exhibit superior 
regulation of degradation kinetics relative to inorganic 
calcium phosphate (CaP) counterparts, owing to their 
programmed architectural configurations that enable 
rather controllable degradation rate.123 Furthermore, 
they could promote vascularisation and tissue inte-
gration, which are critical for repairing large bone 
defects.44,56,75,76,78,124

However, several challenges hinder the widespread 
clinical adoption of biomimetic mineralisation mater-
ials.72,125 Collagen scaffolds, while biocompatible, 
suffer from poor mechanical properties and insuffi-
cient structural stability because collagen may swell 
readily when implanted in vivo due to its high hydro-
philicity.126 Moreover, the degradation of synthetic 
materials used as scaffolds and crystal precursor 
stabilisers, like synthetic polymers, may negatively 

affect the osteogenic microenvironment because the 
degradation process may release acidic byproducts 
during hydrolysis, inducing localised pH reduction, 
thereby compromising cellular osteogenic capacity. 
Additionally, significant gaps in mechanical proper-
ties and biological performance persist compared to 
natural mineralised tissues (Fig 2), primarily due to 
several key limitations. These include the lack of pre-
cise control over the nucleation, growth and assembly 
of HAP crystals in vitro, the inability to effectively 
replicate the natural organic-inorganic combination 
mechanisms and the challenge of forming appropriate 
hierarchical microstructures.11 

For clinical application, demand for biodegradable 
and sustainable materials is also urgent due to envi-
ronmental concerns. Both natural and synthetic bio-
degradable materials could offer promising solutions 
for clinical applications while addressing environ-
mental sustainability. Biomaterials of natural origin 
(e.g. collagen and silk) are processed via eco-friendly 
aqueous methods and degrade without releasing cyto-
toxic by-products.127 Meanwhile, synthetic polymers, 
including PLA and PLGA, could degrade through simple 
chemical hydrolysis to form lactic acid and glycolic 
acid, which are safely removed via normal metabolic 
pathways.128,129

Conclusion 

Natural bone and dentine are organic-inorganic com-
posites primarily composed of collagen and HA, 
arranged in hierarchical structures spanning from the 
atomic to macroscopic scales. To deepen understand-
ing of collagen biomineralisation and offer guidance for 
the design of mineralised collagen-based materials, this 

-
-
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review provides a comprehensive summary of the cur-
rent mechanisms underlying collagen mineralisation 
and recent biomimetic strategies for bone regeneration 
and tooth repair.  Future research should extend to the 
need for predesigned templates with multiscale ordered 
structures and manufacturing scalability which can be 
addressed through advanced technologies like 3D print-
ing and biomanufacturing.
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